Use of a hybrid intelligence decision tree to identify mature B‐cell neoplasms

Author:

Vergnolle Inès1ORCID,Ceccomarini Theo1,Canali Alban1ORCID,Rieu Jean‐Baptiste1,Vergez François123ORCID

Affiliation:

1. Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse Oncopole Toulouse France

2. Université Toulouse III Paul Sabatier Toulouse France

3. Cancer Research Center of Toulouse, UMR1037 INSERM, ERL5294 CNRS Toulouse France

Abstract

AbstractBackgroundMature B‐cell neoplasms are challenging to diagnose due to their heterogeneity and overlapping clinical and biological features. In this study, we present a new workflow strategy that leverages a large amount of flow cytometry data and an artificial intelligence approach to classify these neoplasms.MethodsBy combining mathematical tools, such as classification algorithms and regression tree (CART) models, with biological expertise, we have developed a decision tree that accurately identifies mature B‐cell neoplasms. This includes chronic lymphocytic leukemia (CLL), for which cytometry has been extensively used, as well as other non‐CLL subtypes.ResultsThe decision tree is easy to use and proposes a diagnosis and classification of mature B‐cell neoplasms to the users. It can identify the majority of CLL cases using just three markers: CD5, CD43, and CD200.ConclusionThis approach has the potential to improve the accuracy and efficiency of mature B‐cell neoplasm diagnosis.

Publisher

Wiley

Subject

Cell Biology,Histology,Pathology and Forensic Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential Role of Positivity Percentage of CD200 in the Mature B Cell Neoplasms;Indian Journal of Hematology and Blood Transfusion;2024-01-05

2. Robust Detection of Chronic Lymphocytic Leukemia with Support Vector Machines and Flow Cytometry;Cukurova Anestezi ve Cerrahi Bilimler Dergisi;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3