Endangered beach mouse resistance to a Category 5 hurricane is mediated by elevation and dune habitat

Author:

Cove Michael V.1ORCID,Dietz Samantha L.2,Anderson Chad T.2,Jenkins Amy M.2,Hooker Katie R.2,Kaeser Melanie J.3

Affiliation:

1. North Carolina Museum of Natural Sciences Raleigh North Carolina USA

2. Florida Natural Areas Inventory Tallahassee Florida USA

3. U.S. Fish and Wildlife Service Tyndall Air Force Base Florida USA

Abstract

AbstractCoastal ecosystems and their endemic taxa are under threat from hurricanes that are increasingly frequent and severe due to climate change—leading to a need to better understand factors associated with species' resistance (capacity to withstand) and resilience (capacity to rebound) to these storms. The beach mouse species complex (Peromyscus polionotus spp.) is a representative endangered group of rodents tightly associated with such coastal habitats. We examined track‐tube monitoring data of beach mice from Tyndall Air Force Base, Florida, USA, before and after the 2018 strike of Hurricane Michael, a Category 5 hurricane, and again before and after the 2020 strike of Hurricane Sally, a Category 2 hurricane. We applied dynamic occupancy models to track‐tube survey data to assess environmental factors associated with beach mouse initial occupancy and local extinction following Hurricane Michael. Beach mice exhibited high probabilities of detection and initial occupancy across most sites and all representative habitats before Hurricane Michael. Dynamic models revealed that local extinction probabilities of beach mice decreased with increasing elevation and dune habitat, followed by grassland, and scrub—highlighting high elevation dune as the primary driver of beach mouse resistance to storms. Extinction probability was not related to other factors like plant species percent cover or proximity to storm strike. Beach mice occurred at 100% of track‐tubes before and after Hurricane Sally. Beach mice are adapted to persist in dynamic coastal environments with regular hurricane strikes, as evidenced by their resistance and resilience following Hurricane Michael to reach 100% occupancy with high resistance to the weaker Hurricane Sally. However, as hurricanes become stronger and more frequent with global change, isolated populations of beach mice may be more susceptible to local extinction with the corresponding loss of elevation and dunes. High elevation, particularly in dune habitats, is an important mediator of resistance and resilience to hurricane impacts and should be considered in habitat restoration and reintroduction strategies, especially if relative elevation decreases with sea‐level rise.

Funder

U.S. Fish and Wildlife Service

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3