Expression of functionally distinct ecto‐5′‐nucleotidase/CD73 glycovariants in reactive astrocytes in experimental autoimmune encephalomyelitis and neuroinflammatory conditions in vitro

Author:

Adzic Bukvic Marija1ORCID,Laketa Danijela1ORCID,Dragic Milorad1ORCID,Lavrnja Irena2ORCID,Nedeljkovic Nadezda1ORCID

Affiliation:

1. Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade Belgrade Serbia

2. Institute for Biological Research “Sinisa Stankovic”‐National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia

Abstract

AbstractEcto‐5′‐nucleotidase/CD73 (eN/CD73) is a membrane‐bound enzyme involved in extracellular production of adenosine and a cell adhesion molecule involved in cell–cell interactions. In neuroinflammatory conditions such as experimental autoimmune encephalomyelitis (EAE), reactive astrocytes occupying active demyelination areas significantly upregulate eN/CD73 and express additional eN/CD73 variants. The present study investigated whether the different eN/CD73 variants represent distinct glycoforms and the functional consequences of their expression in neuroinflammatory states. The study was performed in animals at different stages of EAE and in primary astrocyte cultures treated with a range of inflammatory cytokines. Upregulation at the mRNA, protein, and functional levels, as well as the appearance of multiple eN/CD73 glycovariants were detected in the inflamed spinal cord tissue. At the peak of the disease, eN/CD73 exhibited higher AMP turnover and lower enzyme‐substrate affinity than the control group, which was attributed to altered glycosylation under neuroinflammatory conditions. A subsequent in vitro study showed that primary astrocytes upregulated eN/CD73 and expressed the multiple glycovariants upon stimulation with TNFα, IL‐1β, IL‐6, and ATP, with the effect occurring at least in part via induction of JAK/STAT3 signaling. Experimental removal of glycan moieties from membrane glycoproteins by PNGaseF decreased eN/CD73 activity but had no effect on the enzyme's involvement in astrocyte migration. Our results suggest that neuroinflammatory states are associated with the appearance of functionally distinct eN/CD73 glycovariants, which may play a role in the development of the reactive astrocyte phenotype.

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3