Affiliation:
1. Department of Biochemistry and Molecular Biology Michigan State University East Lansing MI USA
2. Plant Molecular Biology, Faculty of Biology Ludwig Maximilians University Munich Planegg Germany
Abstract
Chloroplasts sense a variety of stimuli triggering several acclimation responses. One prominent response is the mechanism of state transitions, which enables rapid adaption to changes in illumination. Here, we investigated the link between divalent cations (calcium, magnesium, and manganese) and protein kinase activity in Arabidopsis chloroplasts. Our results show that manganese ions are the strongest activator of kinase activity in chloroplasts followed by magnesium ions, whereas calcium ions are not able to induce kinase activity. Additionally, the phosphorylation of specific protein bands is strongly reduced in chloroplasts of a cmt1 mutant, which is impaired in manganese import into chloroplasts, as compared to the wild‐type. These findings provide insights for the future characterization of chloroplast protein kinase activity and potential target proteins.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献