Homogeneous drag models in gas–solid fluidization: Big data analytics and conventional correlation

Author:

Ouyang Bo1ORCID,Zhu Li‐Tao1ORCID,Wen Zhao‐Quan1,Chen Xizhong1,Luo Zheng‐Hong1ORCID

Affiliation:

1. Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China

Abstract

AbstractThe drag force model is vital for capturing gas–solid flow dynamics in many simulation approaches. Most of the homogeneous drag models in the literature are expressed as a function of phase fraction (ε) and particle Reynolds number (Res). In this work, we use a “big data” approach to analyze ~108 data points for drag coefficient (Fd) for Geldart Group A particles at atmospheric pressure and find that the contribution of Res on Fd is much less than ε based on the Maximal information coefficient analysis. Thus, these drag models are separately reduced to machine learning and conventional expressions only related to ε. The reduced models achieve almost the same predictive performance as the originals in bubbling, turbulent, and jet fluidizations. Moreover, the reduced models provide better numerical stability for coarse grid simulations. These findings provide new insights into the drag coefficient for Geldart Group A particles under full fluidization conditions.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Chemical Engineering,Environmental Engineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3