Affiliation:
1. Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
Abstract
AbstractThe drag force model is vital for capturing gas–solid flow dynamics in many simulation approaches. Most of the homogeneous drag models in the literature are expressed as a function of phase fraction (ε) and particle Reynolds number (Res). In this work, we use a “big data” approach to analyze ~108 data points for drag coefficient (Fd) for Geldart Group A particles at atmospheric pressure and find that the contribution of Res on Fd is much less than ε based on the Maximal information coefficient analysis. Thus, these drag models are separately reduced to machine learning and conventional expressions only related to ε. The reduced models achieve almost the same predictive performance as the originals in bubbling, turbulent, and jet fluidizations. Moreover, the reduced models provide better numerical stability for coarse grid simulations. These findings provide new insights into the drag coefficient for Geldart Group A particles under full fluidization conditions.
Funder
National Natural Science Foundation of China
National Postdoctoral Program for Innovative Talents
China Postdoctoral Science Foundation
Subject
General Chemical Engineering,Environmental Engineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献