Porous 3D Printed System for Synergistic Tandem Water Cleaning‐Energy Generation

Author:

Ghosal Pranjal1,Parui Arko2,Singh Abhishek K.2,Kumbhakar Partha34,Gupta Ashok K5,Tiwary Chandra S.3ORCID

Affiliation:

1. School of Water Resources Indian Institute of Technology Kharagpur Kharagpur 721302 India

2. Materials Research Centre Indian Institute of Science Bangalore 560012 India

3. Department of Metallurgical and Materials Engineering Indian Institute of Technology Kharagpur West Bengal 721302 India

4. Department of Physics and Electronics CHRIST (Deemed to be University) 560029 Bangalore India

5. Environmental Engineering Division, Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India

Abstract

AbstractNon‐availability of fresh water is the dire consequence of rapid industrialization and the unregulated discharge of industrial effluents. In an attempt to recover water from highly contaminated industrial wastewater, researchers have relied on developing various materials that can treat polluted water efficiently and sustainably. 3D printed materials have proved to be an emerging technology in water treatment. 2D materials have recently enhanced filter technology due to their morphological properties. This study focuses on removing salinity and organic dyes utilizing 2D Gadolinium telluride (Gd2Te3 ) coated 3D printed (2D@3DP) complex architecture. The 2D@3DP structure can potentially increase the contact time of adsorbed saline water due to its complex architecture and can remove ≈52% salinity from brackish water. Furthermore, methylene blue (MB) and Methyl Orange (MO) removal efficiencies are ≈69% and 45%, respectively. Spectroscopic and microscopic results confirm the adsorption of negatively charged chlorine ions on a positively charged 2D surface. The removal of bleaching powder is also tested for real‐life applications, and ≈20% of the bleaching powder is adsorbed. Moreover, the 2D@3DP device exhibits an electrical signal due to impinging sodium chloride droplets from different heights, making it a sustainable solution to address water pollution.

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3