Strong Metal‐Support Interaction‐Induced Regulation of Hydrogen Adsorption Behavior of Uniform Ru Nanoparticles Integrated with CoP Nanosheets for High‐Efficiency Electrochemical Hydrogen Production

Author:

Zhu Yufeng1,Li Jing1,Zhou Guangyao2,Qian Leiming1,Fang Yu1,Xu Mingjiang1,Pang Huan3,Zhang Mingyi4,Xu Jianping5,Yang Jun6,Xu Lin1ORCID,Tang Yawen1

Affiliation:

1. School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China

2. College of Science Jinling Institute of Technology Nanjing 211169 P. R. China

3. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 China

4. Key Laboratory for Photonic and Electronic Bandgap Materials Ministry of Education School of Physics and Electronic Engineering Harbin Normal University Harbin Heilongjiang 150025 China

5. Evercos Battery Co., LTD Suichang Zhejiang 323300 P. R. China

6. State Key Laboratory of Multiphase Complex Systems and Center of Mesoscience Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractThe ingenious modification of the hydrogen adsorption state of ruthenium (Ru) for achieving high‐efficiency electrocatalytic performance is of vital importance for water electrolysis technology. Herein, a novel heterostructured catalyst composed of highly dispersed ultrafine Ru nanoparticles immobilized on CoP nanosheet (denoted as Ru/CoP hereafter) is developed through a feasible “impregnation‐phosphorization” strategy. Experimental results and density functional theory (DFT) simulations collectively indicate that the strong metal‐support interaction (SMSI) effect between Ru nanoparticles and CoP nanosheet substrate can dramatically tailor the electronic configurations of active centers, thus accelerating the charge transfer rate and regulating the hydrogen binding energy. Consequently, the Ru/CoP electrocatalyst with optimal Ru loading content demonstrates prominent HER performance in alkaline solution with a low overpotential of 36 mV to afford a current density of 10 mA cm−2 and a small Tafel slope of 73.0 mV dec−1, which can almost compete with that of commercial Pt/C. This work provides a new inspiration for the elaborate modification of intermediate adsorption capacity and enhancement of electrocatalytic performance for high‐efficiency electrocatalysts in energy conversion fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3