The Rapid Mechanochemical Synthesis of Microporous Covalent Triazine Networks: Elucidating the Role of Chlorinated Linkers by a Solvent‐Free Approach

Author:

Krusenbaum Annika1ORCID,Kraus Fabien Joel Leon1,Hutsch Stefanie1,Grätz Sven1ORCID,Höfler Mark Valentin2ORCID,Gutmann Torsten2ORCID,Borchardt Lars1ORCID

Affiliation:

1. Inorganic Chemistry I Ruhr‐Universität Bochum Universitätsstraße 150 44780 Bochum Germany

2. Technical University Darmstadt Institute for Inorganic and Physical Chemistry Alarich‐Weiss Straße 4 64287 Darmstadt Germany

Abstract

AbstractThe mechanochemical synthesis of porous covalent triazine networks (CTNs), exhibiting theoretically ideal C/N ratios and high specific surface areas, is presented. Employing this solvent‐free approach allows to minimize the ecological impact of the synthesis by bypassing hazardous wastes, while simultaneously observing the reactions between the individual starting materials separately for the first time. Especially the role of dichloromethane needs to be reconsidered, functioning as a linker between the nitrogen‐containing node cyanuric chloride and the aromatic monomer 1,3,5‐triphenylbenzene, as proven by X‐ray photoelectron spectroscopy and 1H → 13C Cross‐Polarization magic‐angle‐spinning nuclear magnetic resonance spectroscopy. This results in a drastic enhancement of the reaction rate, reducing the synthesis time down to 1 minute. Additionally, this linkage over a C1 bridge enables the incorporation of nitrogen into already synthesized polymers by post polymerization functionalization. The variation of the synthesis building blocks, namely the linker, node, and monomer, results in a variety of nitrogen‐containing polymers with specific surface areas of up to 1500 m2 g−1. Therefore, the presented approach is capable to target the synthesis of various CTNs with a minimal use of chlorinated linker, rendering the concept as a sustainable alternative to the classical solution‐based synthesis.

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3