Enhanced Photocatalytic Performance of TiO2@CeO2 Hollow Structure through Synergetic Surface and Interface Engineering

Author:

Lin Chun‐Hsien1,Chen Yi‐Che1,Hsu Pei‐Kai1,Gloter Alexandre2,Huang Wei‐Hsiang3,Chen Chi‐Liang3,Song Jenn‐Ming4,Chen Shih‐Yun1ORCID

Affiliation:

1. Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei 106335 Taiwan

2. Laboratoire de Physique des Solides CNRS Université Paris‐Saclay Orsay 91405 France

3. National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan

4. Department of Materials Science and Engineering National Chung Hsing University Taichung Taiwan

Abstract

AbstractIn this study, a synergetic structural design is developed to improve the photocatalytic performance of the sub‐micro core–shell hollow sphere (TiO2@H‐CeO2). TiO2@H‐CeO2 with maximum surface/interface effect is chosen as the substrate and then reacts with different concentrations of Ce(NO3)3·6H2O solutions. Optical properties analysis shows that after the reaction, the band gap of the composite structure and the electron–hole recombination efficiency both decrease while the photodegradation ability is effectively improved. Spectroscopic and microscopic observations reveal two changes in the structure after the reaction. The first is the deposition of CeO2 nanoparticles that can be observed inside and on the surface of the shell; the second is the doping of Ce3+ in the TiO2 nanoparticles of this shell. The deposition of CeO2 particles increases the interfacial area between the CeO2 and TiO2 and facilitates the corresponding charge transfer. The Ce3+ doping in the TiO2 shell changes the optical properties of TiO2. Therefore, the improved performance of the composite structure can be attributed to the synergy of different surfaces and interfacial effects caused by the reactions.

Publisher

Wiley

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3