Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D‐printed ABS‐TPU blends by FDM

Author:

Soltanmohammadi Kianoosh1,Rahmatabadi Davood1ORCID,Aberoumand Mohammad1,Soleyman Elyas1,Ghasemi Ismaeil2,Baniassadi Majid1,Abrinia Karen1,Bodaghi Mahdi3,Baghani Mostafa1

Affiliation:

1. School of Mechanical Engineering, College of Engineering University of Tehran Tehran Iran

2. Faculty of Processing Iran Polymer and Petrochemical Institute Tehran Iran

3. Department of Engineering, School of Science and Technology Nottingham Trent University Nottingham UK

Abstract

AbstractIn this paper, blends of ABS‐TPU with two different weight percentages of TPU were prepared using fused deposition modeling technology. The effect of adding TPU on the fracture toughness of ABS and mechanical properties was comprehensively studied. Tensile, compression, fracture toughness, and shear tests were conducted on the 3D‐printed samples. Thermal and microstructural analyses were performed using dynamic mechanical thermal analysis (DMTA), and scanning electron microscope (SEM). The DMTA results showed that adding TPU decreased the storage modulus and the glass transition temperature of ABS, as well as its peak intensity. The mechanical test results showed that adding TPU decreased the strength but increased the formability and elongation of the samples. Fracture tests showed that the addition of TPU decreased the maximum force needed for a crack to initiate. The force required for crack initiation decreased from 568.4 N for neat ABS to 335.3 N for ABS80 and 123.2 N for ABS60. The ABS60 blend exhibited the highest strength against crack growth, indicating that TPU can change the behavior of ABS from brittle to ductile. Shear test results and SEM images also showed good adhesion strength between the printed samples for all three specimens, indicating their good printability. Adding TPU resulted in a reduction in the size and number of voids and holes between the printed layers.Highlights Melt mixing, filament preparation, and 3D printing of ABS‐TPU blends. Investigation of mechanical properties, microstructure, and fracture toughness. Improved resistance to crack growth and elongation by adding TPU to ABS. Improving printability and reducing microholes in blends compared with ABS. Achieving a wide range of mechanical properties for various applications.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3