Bioinformatic survey of CRISPR loci across 15 Serratia species

Author:

Scrascia Maria1ORCID,Roberto Roberta2,D'Addabbo Pietro1,Ahmed Yosra3,Porcelli Francesco2,Oliva Marta1,Calia Carla1,Marzella Angelo1,Pazzani Carlo1

Affiliation:

1. Department of Biology University of Bari Aldo Moro Bari Italy

2. Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti University of Bari Aldo Moro Bari Italy

3. Plant Quarantine Pathogens Laboratory, Mycology Research & Disease Survey Plant Pathology Research Institute, ARC Giza Egypt

Abstract

AbstractThe Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR‐associated proteins (CRISPR–Cas) system of prokaryotes is an adaptative immune defense mechanism to protect themselves from invading genetic elements (e.g., phages and plasmids). Studies that describe the genetic organization of these prokaryotic systems have mainly reported on the Enterobacteriaceae family (now reorganized within the order of Enterobacterales). For some genera, data on CRISPR–Cas systems remain poor, as in the case of Serratia (now part of the Yersiniaceae family) where data are limited to a few genomes of the species marcescens. This study describes the detection, in silico, of CRISPR loci in 146 Serratia complete genomes and 336 high‐quality assemblies available for the species ficaria, fonticola, grimesii, inhibens, liquefaciens, marcescens, nematodiphila, odorifera, oryzae, plymuthica, proteomaculans, quinivorans, rubidaea, symbiotica, and ureilytica. Apart from subtypes I‐E and I‐F1 which had previously been identified in marcescens, we report that of I‐C and the I‐E unique locus 1, I‐E*, and I‐F1 unique locus 1. Analysis of the genomic contexts for CRISPR loci revealed mdtNphnP as the region mostly shared (grimesii, inhibens, marcescens, nematodiphila, plymuthica, rubidaea, and Serratia sp.). Three new contexts detected in genomes of rubidaea and fonticola (puu genes‐mnmA) and rubidaea (osmEsoxG and ampCyebZ) were also found. The plasmid and/or phage origin of spacers was also established.

Publisher

Wiley

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3