Preparation and properties of triphenyl octylphosphonium bromide‐modified vermiculite and its PBAT composite films

Author:

Zhan Xiao1ORCID,Shang Xiaoyu1,Zhou Teng1,Zhang Daohai1ORCID,Qin Shuhao12

Affiliation:

1. School of Chemical Engineering Guizhou Minzu University Guiyang China

2. National Engineering Research Center for Compounding and Modification of Polymer Materials Guiyang China

Abstract

AbstractAs living standards improve, there is a growing demand for fresher, healthier and more sustainable food options, with a concomitant challenge to develop new biodegradable packaging. This investigation centres around the synthesis of quaternary phosphonium salt (triphenyl octylphosphonium bromide P8) and use it to modify vermiculite (VMT). The structure of P8 was determined using both NMR and FTIR. The structural investigation and performance analysis of P8‐modified vermiculite (P8@VMT) were carried out by particle size, XRD, FTIR and microstructure. In addition, P8@VMT/PBAT composite films were prepared by solution method using PBAT as matrix material and P8@VMT as filler. The properties of P8@VMT/PBAT composite films were compared to those of pure PBAT films using TGA, DSC, SEM, and antibacterial tests. Results showed that the melting and crystallization temperatures of P8@VMT/PBAT composite films were higher than those of pure PBAT films. However, increasing the content of P8@VMT led to a decrease in thermal stability as well as melting enthalpy, crystallization enthalpy, and crystallinity. On the other hand, loss modulus, storage modulus, and complex viscosity significantly increased with the addition of P8@VMT. Compared to pure PBAT film, P8@VMT/PBAT‐20% composites exhibited a 19.6% reduction in tensile strength and a 94.7% decrease in elongation at break due to the presence of quaternary phosphonium salt (P8) used as a modifier for VMT during melt blending method preparation.Highlights Quaternary phosphonium salt P8 was successfully synthesized. PBAT/P8@VMT composite films with different P8@VMT were prepared. P8@VMT improves compatibility between VMT and PBAT. PBAT/P8@VMT composite films have antimicrobial effects. The PBAT/P8@VMT composite films are biodegradable.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3