An efficient skin cancer detection and classification using Improved Adaboost Aphid–Ant Mutualism model

Author:

Renith G.1ORCID,Senthilselvi A.1ORCID

Affiliation:

1. Department of CSE SRM Institute of Science and Technology Chennai Tamilnadu India

Abstract

AbstractSkin cancer is the most common deadly disease caused due to abnormal and uncontrolled growth of cells in the human body. According to a report, annually nearly one million people are affected by skin cancer worldwide. To protect human lives from such life‐threatening diseases, early identification of skin cancer is the only precautionary measure. In recent times, there already exist numerous automated techniques to detect and classify skin lesion malignancies using dermoscopic images. However, analyzing the dermoscopic images becomes an arduous task due to the presence of troublesome features such as light reflections, illumination variations, and uneven shape and dimension. To address the challenges faced during skin cancer recognition process, in this paper, we proposed an efficient intelligent automated system to detect and discriminate the dermoscopic images into malignant or benign. The proposed skin cancer detection model utilizes the HAM10000 dataset for evaluation. The dermoscopic images acquired from the HAM10000 dataset are initially preprocessed to enhance the quality of image and thus making it fit to train the classifier. Afterward, the most significant image patterns are extracted by the AlexNet architecture without any loss of detailed information. Later on, the extracted features are inputted to the proposed Improved Adaboost‐based Aphid–Ant Mutualism (IAB‐AAM) classification model to discriminate the images into malignant and benign categories. The proposed IAB‐AAM approach witnessed extensive enhancement in classification accuracy. The enhanced performance is attributed by integrating the AAM optimization concept with the IAB model. By comparing the performance of the proposed IAB‐AAM with other modern methods in terms of different evaluation indicators namely accuracy, precision, specificity, sensitivity, and f‐measure, the efficiency of the proposed IAB‐AAM technique is analyzed. From the experimental results, it is known that the proposed IAB‐AAM technique attains a greater accuracy rate of 95.7% in detecting skin cancer classes than other compared approaches.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Vision and Pattern Recognition,Software,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Approach for Breast Cancer Detection by Mammograms;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

2. Automated Skin Cancer Diagnosis and Localization Using Deep Reinforcement Learning;IETE Journal of Research;2024-01-29

3. Multi-Level Interpretable and Adaptive Representation of EEG Signals for Sleep Scoring Using Ensemble Learning Multi Classifiers;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3