Seismic damage analysis due to near‐fault multipulse ground motion

Author:

Chen Guan12ORCID,Yang Jiashu3,Wang Ruohan12,Li Kaiqi4,Liu Yong2ORCID,Beer Michael156

Affiliation:

1. Institute for Risk and Reliability Leibniz Universität Hannover Hannover Germany

2. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan P.R. China

3. School of Civil Engineering Xi'an University of Architecture and Technology Xi'an P.R. China

4. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hong Kong P.R. China

5. Institute for Risk and Uncertainty and School of Engineering University of Liverpool Liverpool UK

6. International Joint Research Center for Resilient Infrastructure & International Joint Research Center for Engineering Reliability and Stochastic Mechanics Tongji University Shanghai P.R. China

Abstract

AbstractNear‐fault pulse‐like ground motion is a significant class of seismic records since it tends to cause more severe damage to structures than ordinary ground motions. However, previous researches mainly focus on single‐pulse ground motions. The multipulse ground motions that exist in records receive rare attention. In this study, an analysis procedure is proposed to investigate the effect of multipulse ground motions on structures by integrating finite element analysis and an identification method that features each pulse in the multipulse ground motion satisfying the same evaluation criteria. First, the Arias intensity, wavelet‐based cumulative energy distribution, and response spectra of identified non‐, single‐, and multipulse ground motions are compared. Then, the seismic damage on frame structures, a soil slope, and a concrete dam under non‐, single‐, and multipulse ground motions are analyzed. Results show that the spectral velocity of multipulse ground motions is significantly greater than those of non‐ and single‐pulse ground motions and potentially contains multiple peaks in the long‐period range. Seismic damage evaluation indicates that the maximum interstory drift of frame structures with high fundamental periods under multipulse ground motions is about twice that of nonpulse ground motions. Similar characteristics also exist in the soil slope and the concrete dam. Therefore, multipulse ground motions potentially cause more severe damage to structures compared to non‐ and single‐pulse ground motions. The findings of this study facilitate the recognition of the increased seismic demand imposed by the multipulse ground motion in engineering practices, provide new possibilities for ground motion selection in seismic design validation, and shed new light on seismic hazard and risk analysis in near‐fault regions.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3