CRISPR‐based environmental DNA detection for a rare endangered estuarine species

Author:

Nagarajan Raman P.1ORCID,Sanders Leigh1,Kolm Natalie1,Perez Alejandro1,Senegal Taylor2ORCID,Mahardja Brian3ORCID,Baerwald Melinda R.4ORCID,Schreier Andrea D.1ORCID

Affiliation:

1. Department of Animal Science University of California Davis Davis California USA

2. U.S. Fish and Wildlife Service Lodi California USA

3. U.S. Bureau of Reclamation Sacramento California USA

4. Division of Integrated Science and Engineering California Department of Water Resources West Sacramento California USA

Abstract

AbstractEnvironmental DNA (eDNA) methods complement traditional aquatic monitoring surveys and are especially advantageous for rare and listed species to detect spatial and temporal distribution patterns. However, improvements in ease of use and portability could increase the utility of eDNA methods, leading to more widespread application, including expanding its role in management decision‐making processes. We describe the development of an eDNA detection assay for delta smelt (Hypomesus transpacificus), an endangered fish in the San Francisco Estuary, using SHERLOCK (Specific High‐Sensitivity Enzymatic Reporter Unlocking). SHERLOCK is a clustered regularly interspaced short palindromic repeats (CRISPR)‐based diagnostic tool with the ability to detect species‐specific genetic variants, making it ideal for genetic‐based taxonomic identification of any organism. Because of its high sensitivity and specificity, SHERLOCK is adaptable to eDNA detection in water samples. Here, we describe adaptation of a delta smelt SHERLOCK assay for use with estuarine water eDNA samples. This version of the assay exhibits increased sensitivity compared to the original delta smelt SHERLOCK protocol (new limit of detection approximately three copies per reaction compared to ~300 in original assay) and successfully detected delta smelt eDNA in both experimental and natural contexts. Overall, our results demonstrate that SHERLOCK eDNA detection offers managers an alternative, isothermal methodology, and highlights some challenges for detection of rare, endangered species at low abundance.

Funder

U.S. Fish and Wildlife Service

Publisher

Wiley

Subject

Genetics,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3