Optical Router and 4 × 1 Multiplexer of Coexisting Crystal Field and Non‐Hermitian Autler‐Townes Splitting Controlled by Photon–Phonon Dressing in Eu3+: BiPO4

Author:

Mujahid Anas1,Fan Huanrong1,Wang Yafen1,Raza Faizan1,Ahmed Irfan23,Guo Yaxin1,Munir Faisal1,Usman Muhammad1,Li Bo1,Zhang Yanpeng1ORCID

Affiliation:

1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique Xi'an Jiaotong University Xi'an 710049 China

2. Department of Physics City University of Hong Kong Hong Kong SAR 999077 China

3. Department of Electrical Engineering Sukkur IBA Universit Sukkur 65200 Pakistan

Abstract

AbstractFor the first time, the Autler Townes‐splitting dependency on parity‐time symmetry breaking is investigated. The first‐, second‐, and third‐order splitting in spectral domain outputs obtained through different phase transitions of Eu3+: BiPO4 are explored. First‐order splitting corresponds to pure crystal field splitting attributed to the shifting of energy levels and the inherent effect of the crystal field. Second/third‐order splitting results from the coexistence of crystal field and non‐Hermitian spectral Autler Townes (SAT)‐splitting caused by single‐photon dressing coupled with the interaction of phonon and double photon–phonon dressing. It is further explored the relationship between spectral and temporal‐domain splitting obtained through the different phases of Eu3+: BiPO4 by changing the laser detuning. It is authenticated that the contributions of crystal field, photon, and phonon dressing interactions can only be individually distinguished in the spectral domain. Moreover, the experiment results suggest the analogy of an optical 4 × 1 multiplexer with a channel spacing contrast of ≈91% and an optical router with a channel equalization ratio of ≈93%.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3