Quantum‐Noise‐Driven Generative Diffusion Models

Author:

Parigi Marco1ORCID,Martina Stefano12ORCID,Caruso Filippo123ORCID

Affiliation:

1. Department of Physics and Astronomy University of Florence Via Sansone 1 Sesto Fiorentino 50019 Florence Italy

2. LENS ‐ European Laboratory for Non‐Linear Spectroscopy University of Florence Via Nello Carrara 1 Sesto Fiorentino 50019 Florence Italy

3. Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR‐INO) Sesto Fiorentino I‐50019 Italy

Abstract

AbstractGenerative models realized with Machine Learning (ML) techniques are powerful tools to infer complex and unknown data distributions from a finite number of training samples in order to produce new synthetic data. Diffusion Models (DMs) are an emerging framework that have recently overcome Generative Adversarial Networks (GANs) in creating high‐quality images. Here, is proposed and discussed the quantum generalization of DMs, i.e., three Quantum‐Noise‐Driven Generative Diffusion Models (QNDGDMs) that could be experimentally tested on real quantum systems. The idea is to harness unique quantum features, in particular the non‐trivial interplay among coherence, entanglement, and noise that the currently available noisy quantum processors do unavoidably suffer from, in order to overcome the main computational burdens of classical diffusion models during inference. Hence, the suggestion is to exploit quantum noise not as an issue to be detected and solved but instead as a beneficial key ingredient to generate complex probability distributions from which a quantum processor might sample more efficiently than a classical one. Three examples of the numerical simulations are also included for the proposed approaches. The results are expected to pave the way for new quantum‐inspired or quantum‐based generative diffusion algorithms addressing tasks as data generation with widespread real‐world applications.

Funder

HORIZON EUROPE Framework Programme

European Defence Agency

H2020 Future and Emerging Technologies

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Wiley

Reference99 articles.

1. J.Sohl‐Dickstein E.Weiss N.Maheswaranathan S.Ganguli inProceedings of the 32nd International Conference on Machine Learning Proceedings of Machine Learning Research (Eds.:F.Bach D.Blei) vol.37 PMLR Lille France2015 pp.2256–2265.

2. O.Ronneberger P.Fischer T.Brox inMedical Image Computing and Computer‐Assisted Intervention – MICCAI 2015 (Eds.:N.Navab J.Hornegger W. M.Wells A. F.Frangi) Springer International Publishing Cham Switzerland2015 pp.234–241.

3. J.Ho A.Jain P.Abbeel inAdvances in Neural Information Processing Systems vol.33 (Eds.:H.Larochelle M.Ranzato R.Hadsell M.Balcan H.Lin) Curran Associates Inc. New York NY USA2020 pp.6840–6851.

4. An Introduction to Variational Autoencoders

5. Generative adversarial networks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Hybrid Diffusion Models for Image Synthesis;KI - Künstliche Intelligenz;2024-08-09

2. Distributed quantum architecture search;Physical Review A;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3