Effect of lamination sequence and warhead shape on impact resistance of fiber‐metal laminates

Author:

Wei Gang1ORCID,Hao Chenyu1,Ai Jingyu1,Feng Yan2,Deng Yunfei1

Affiliation:

1. College of Aeronautical Engineering Civil Aviation University of China Tianjin China

2. Technology Department CRRC ADVANCED COMPOSITES (QINGDAO) CO., LTD Qingdao China

Abstract

AbstractIn this work, the failure mode and ballistic protection capability of the carbon fiber aluminum alloy laminated target plate under the impact of high‐speed projectile body were studied by ballistic impact test. The effects of the lamination sequence and warhead shape difference on the impact resistance of the laminated aluminum alloy and carbon fiber laminates were analyzed. Two kinds of projectile bodies, flat and oval head, were used to carry out multiple high‐speed impact experiments on four groups of targets with different stacking sequences. By analyzing the result, it is found that the lamination sequence of the target plate has a significant effect on the anti‐impact performance only when the flat head projectile impacts, while the ovoid projectile has almost no effect. In the fiber‐metal composite configuration, the aluminum plate placed in front of the carbon fiber plate showed the best resistance to flat head bullet impact, the ballistic limit speed reached 135 m/s, and the overall impact resistance improved by up to 26% compared with other configurations. Unlike the shear failure caused by flat head projectile, ovoid projectile impact can cause serious tensile and tear damage. Based on the experimental results, it is clear that the laminated structure has better penetration resistance against the flat head projectile, and the placement of aluminum plate on the impact surface can change the failure mode of carbon fiber laminates and improve the energy absorption level of composite plates.Highlights Unlike traditional fiber‐metal laminates, the target plate used in this experiment does not use adhesive, which makes the deformation of the two materials will not affect each other, which is conducive to the study of its own impact resistance. The mechanical behavior and damage failure mode of the target plate under high speed impact load were studied. The impact of ovoid projectile changes the damage failure mode of the target plate. For the configuration of fiber‐metal laminates, the ballistic limit value is as low as 100 m/s, and the energy absorption value fluctuates in the range of 145–190 J with the change of impact velocity. Compared with ovoid projectile, laminated material has stronger impact resistance to flat head projectile. The metal plate arranged on the impact surface can change the damage mode from shear failure to tensile failure, thus greatly improving the ballistic limit and impact resistance, overall impact resistance can be improved by up to 26%.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3