Real‐time topology optimization via learnable mappings

Author:

Garayalde Gabriel1,Torzoni Matteo1ORCID,Bruggi Matteo1ORCID,Corigliano Alberto1

Affiliation:

1. Dipartimento di Ingegneria Civile e Ambientale Politecnico di Milano Milan Italy

Abstract

AbstractIn traditional topology optimization, the computing time required to iteratively update the material distribution within a design domain strongly depends on the complexity or size of the problem, limiting its application in real engineering contexts. This work proposes a multi‐stage machine learning strategy that aims to predict an optimal topology and the related stress fields of interest, either in 2D or 3D, without resorting to any iterative analysis and design process. The overall topology optimization is treated as regression task in a low‐dimensional latent space, that encodes the variability of the target designs. First, a fully‐connected model is employed to surrogate the functional link between the parametric input space characterizing the design problem and the latent space representation of the corresponding optimal topology. The decoder branch of an autoencoder is then exploited to reconstruct the desired optimal topology from its latent representation. The deep learning models are trained on a dataset generated through a standard method of topology optimization implementing the solid isotropic material with penalization, for varying boundary and loading conditions. The underlying hypothesis behind the proposed strategy is that optimal topologies share enough common patterns to be compressed into small latent space representations without significant information loss. Results relevant to a 2D Messerschmitt‐Bölkow‐Blohm beam and a 3D bridge case demonstrate the capabilities of the proposed framework to provide accurate optimal topology predictions in a fraction of a second.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real‐time topology optimization via learnable mappings;International Journal for Numerical Methods in Engineering;2024-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3