Organic sulfur from source to sink in low‐sulfate Lake Superior

Author:

Phillips Alexandra A.12ORCID,Ulloa Imanol1ORCID,Hyde Emily2ORCID,Agnich Julia2,Sharpnack Lewis1ORCID,O'Malley Katherine G.1ORCID,Webb Samuel M.3ORCID,Schreiner Kathryn M.24ORCID,Sheik Cody S.25ORCID,Katsev Sergei26ORCID,Raven Morgan Reed1ORCID

Affiliation:

1. Department of Earth Science University of California Santa Barbara Santa Barbara California USA

2. Large Lakes Observatory University of Minnesota Duluth Duluth Minnesota USA

3. Stanford Synchrotron Radiation Lightsource Stanford University Menlo Park California USA

4. Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota USA

5. Department of Biology University of Minnesota Duluth Duluth Minnesota USA

6. Department of Physics and Astronomy University of Minnesota Duluth Duluth Minnesota USA

Abstract

AbstractOrganic sulfur plays a crucial role in the biogeochemistry of aquatic sediments, especially in low sulfate (< 500 μM) environments like freshwater lakes and the Earth's early oceans. To better understand organic sulfur cycling in these systems, we followed organic sulfur in the sulfate‐poor (< 40 μM) iron‐rich (30–80 μM) sediments of Lake Superior from source to sink. We identified microbial populations with shotgun metagenomic sequencing and characterized geochemical species in porewater and solid phases. In anoxic sediments, we found an active sulfur cycle fueled primarily by oxidized organic sulfur. Sediment incubations indicated a microbial capacity to hydrolyze sulfonates, sulfate esters, and sulfonic acids to sulfate. Gene abundances for dissimilatory sulfate reduction (dsrAB) increased with depth and coincided with sulfide maxima. Despite these indicators of sulfide formation, sulfide concentrations remain low (< 40 nM) due to both pyritization and organic matter sulfurization. Immediately below the oxycline, pyrite accounted for 13% of total sedimentary sulfur. Both free and intact lipids in this same interval accumulated disulfides, indicating rapid sulfurization even at low concentrations of sulfide. Our investigation revealed a new model of sulfur cycling in a low‐sulfate environment that likely extends to other modern lakes and possibly the ancient ocean, with organic sulfur both fueling sulfate reduction and consuming the resultant sulfide.

Funder

Directorate for Geosciences

SLAC National Accelerator Laboratory

US Department of Energy's Basic Energy Sciences

National Institutes of Health

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3