Machine learning provides insights for spatially explicit pest management strategies by integrating information on population connectivity and habitat use in a key agricultural pest

Author:

Li Jinyu12ORCID,Zhang Bang2,Jiang Jia12,Mao Yi12,Li Kai12,Liu Fengjing1

Affiliation:

1. Tea Research Institute Fujian Academy of Agricultural Sciences Fuzhou China

2. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops Institute of Applied Ecology, Fujian Agriculture and Forestry University Fuzhou China

Abstract

AbstractBACKGROUNDInsect pests have garnered increasing interest because of anthropogenic global change, and their sustainable management requires knowledge of population habitat use and spread patterns. To enhance this knowledge for the prevalent tea pest Empoasca onukii, we utilized a random forest algorithm and a bivariate map to develop and integrate models of its habitat suitability and genetic connectivity across China.RESULTSOur modeling revealed heterogeneous spatial patterns in suitability and connectivity despite the common key environmental predictor of isothermality. Analyses indicated that tea cultivation in areas surrounding the Tibetan Plateau and the southern tip of China may be at low risk of population outbreaks because of their predicted low suitability and connectivity. However, regions along the middle and lower reaches of the Yangtze River should consider the high abundance and high recolonization potential of E. onukii, and thus the importance of control measures. Our results also emphasized the need to prevent dispersal from outside regions in the areas north of the Yangtze River and highlighted the effectiveness of internal management efforts in southwestern China and along the southeastern coast. Further projections under future conditions suggested the potential for increased abundance and spread in regions north of the Yangtze River and the southern tip of China, and indicated the importance of long‐term monitoring efforts in these areas.CONCLUSIONThese findings highlighted the significance of combining information on habitat use and spread patterns for spatially explicit pest management planning. In addition, the approaches we used have potential applications in the management of other pest systems and the conservation of endangered biological resources. © 2024 Society of Chemical Industry.

Funder

Fujian Academy of Agricultural Sciences

Fujian Provincial Department of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3