Notch Promotes Radioresistance of Glioma Stem Cells

Author:

Wang Jialiang12,Wakeman Timothy P.3,Lathia Justin D.4,Hjelmeland Anita B.4,Wang Xiao-Fan3,White Rebekah R.12,Rich Jeremy N.4,Sullenger Bruce A.12

Affiliation:

1. Department of Surgery,Duke University Medical Center, Durham, North Carolina

2. Duke Translational Research Institute,Duke University Medical Center, Durham, North Carolina

3. Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina

4. Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, Ohio

Abstract

Abstract Radiotherapy represents the most effective nonsurgical treatments for gliomas. However, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we show that inhibition of Notch pathway with γ-secretase inhibitors (GSIs) renders the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhance radiation-induced cell death and impair clonogenic survival of glioma stem cells but not non-stem glioma cells. Expression of the constitutively active intracellular domains of Notch1 or Notch2 protect glioma stem cells against radiation. Notch inhibition with GSIs does not alter the DNA damage response of glioma stem cells after radiation but rather reduces Akt activity and Mcl-1 levels. Finally, knockdown of Notch1 or Notch2 sensitizes glioma stem cells to radiation and impairs xenograft tumor formation. Taken together, our results suggest a critical role of Notch signaling to regulate radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment.

Funder

Basic Research Fellowship from the American Brain Tumor Association

Howard Hughes Medical Institute Early Career Award

National Service Research Award

National Institutes of Health

Childhood Brain Tumor Foundation

Pediatric Brain Tumor Foundation of the United States

Accelerate Brain Cancer Cure

Alexander and Margaret Stewart Trust

Brain Tumor Society

Goldhirsh Foundation

Sidney Kimmel Foundation

Damon Runyon Cancer Research Foundation

NIH grants

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3