Pitsubcosides A–L, highly esterified eudesmane sesquiterpenoid glycosides with antibacterial activity from Pittosporum subulisepalum and their mechanism

Author:

Guan Shengnan1,Xia Jiankai1,Huang Rong1,Ding Jiaqi1,Liu Xinzheng1,Zhang Yufeng1,Zhang Xiuyun1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy Northwest A&F University Yangling PR China

Abstract

AbstractBACKGROUNDPlants from the genus Pittosporum are traditionally used as antibacterial, antifungal and antiviral agents. A bioassay evaluation of the extract of Pittosporum subulisepalum revealed antibacterial activity. This study focused on the discovery of the antibacterial metabolism in P. subulisepalum, as well as the modes of action of its active components.RESULTSA chemical investigation of an ethyl acetate (EtOAc) extract of the aerial parts of P. subulisepalum led to the isolation of 12 previously undescribed eudesmane sesquiterpenoid glycoside esters (ESGEs), pitsubcosides AL (1–12). Their structures were elucidated by extensive spectroscopic analysis, including one‐ and two‐dimensional NMR, high‐resolution electrospray ionization mass spectrometry, electronic circular dichroism spectra and single‐crystal X‐ray crystallography analysis or by comparing with authentic samples. The new ESGEs were characterized by their highly esterified glycoside moieties. Among them, compounds 13, 5 and 8 showed a moderate inhibitory effect against Staphylococcus aureus, methicillin‐resistant S. aureus (MRSA), Bacillus cereus, Bacillus subtilis, Pseudomonas syringae pv. actinidiae (Psa) and Erwinia carotovora with minimum inhibitory concentrations (MICs) ranging from 3.13 to 100 μm. Among them, compounds 3 and 5 showed remarkable antibacterial activity against S. aureus and Psa with MIC values of 6.25 and 3.13 μm, respectively. Live bacterial mass and the biofilms of S. aureus and Psa were quantified using methyl tetrazolium and crystal violet assays. Fluorescence microscopy and scanning electron microscopy experiments revealed an antibacterial mechanism of cell membrane architectural disruption.CONCLUSIONThe results suggest that ESGEs possess great potential for the development of antibacterial agents to control plant pathogens. © 2023 Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3