Insights into Mesenchymal Stem Cell Aging: Involvement of Antioxidant Defense and Actin Cytoskeleton

Author:

Kasper Grit12,Mao Lei3,Geissler Sven12,Draycheva Albena13,Trippens Jessica1,Kühnisch Jirko4,Tschirschmann Miriam5,Kaspar Katharina1,Perka Carsten12,Duda Georg N.12,Klose Joachim23

Affiliation:

1. Julius Wolff Institute and Center for Musculoskeletal Surgery Berlin, Charité—Universitätsmedizin Berlin, Berlin, Germany

2. Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany

3. Institute for Human Genetics, Charité—Universitätsmedizin Berlin, Berlin, Germany

4. Institute of Medical Genetics, Charité—Universitätsmedizin Berlin, Berlin, Germany

5. Department of Medical Biotechnology, Berlin University of Technology, Berlin, Germany

Abstract

Abstract Progenitor cells such as mesenchymal stem cells (MSCs) have elicited great hopes for therapeutic augmentation of physiological regeneration processes, e.g., for bone fracture healing. However, regeneration potential decreases with age, which raises questions about the efficiency of autologous approaches in elderly patients. To elucidate the mechanisms and cellular consequences of aging, the functional and proteomic changes in MSCs derived from young and old Sprague–Dawley rats were studied concurrently. We demonstrate not only that MSC concentration in bone marrow declines with age but also that their function is altered, especially their migratory capacity and susceptibility toward senescence. High-resolution two-dimensional electrophoresis of the MSC proteome, under conditions of in vitro self-renewal as well as osteogenic stimulation, identified several age-dependent proteins, including members of the calponin protein family as well as galectin-3. Functional annotation clustering revealed that age-affected molecular functions are associated with cytoskeleton organization and antioxidant defense. These proteome screening results are supported by lower actin turnover and diminished antioxidant power in aged MSCs, respectively. Thus, we postulate two main reasons for the compromised cellular function of aged MSCs: (a) declined responsiveness to biological and mechanical signals due to a less dynamic actin cytoskeleton and (b) increased oxidative stress exposure favoring macromolecular damage and senescence. These results, along with the observed similar differentiation potentials, imply that MSC-based therapeutic approaches for the elderly should focus on attracting the cells to the site of injury and oxidative stress protection, rather than merely stimulating differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

Federal Ministry of Education and Research

Berlin-Brandenburg Center for Regenerative Therapies

German National Genome Research Network

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3