Thermal stability and degradation mechanism of C60 fullerene‐based polymers

Author:

Lisa Gabriela1ORCID,Cleminte Cerasela‐Ionela1,Michinobu Tsuyoshi2

Affiliation:

1. Department of Chemical Engineering, Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection Gheorghe Asachi Technical University of Iasi Iasi Romania

2. Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan

Abstract

AbstractIn this paper, the thermal stability and degradation mechanisms of C60 fullerene‐based polymers, obtained by click polymerization between dialkyne‐substituted C60 derivative monomers and 1,3,5‐tris(dodecyloxy)benzene‐based diazide comonomers, were evaluated. The activation energy of the fullerene polymer C60P2 with an ethylene spacer, determined under peak degradation rate conditions, was lower than that of the counter polymer C60P1 with a methylene spacer, suggesting lower thermal stability of C60P2. The combined technique of thermogravimetric analysis—mass spectroscopy and Fourier transform infrared spectroscopy revealed that the thermal decomposition onset of the analyzed samples is accompanied by CC cleavage of the dodecyloxyside chain groups, followed by the decomposition of the 1,2,3‐triazole, dicarboxylate and benzoate moieties. It was found that no thermal decomposition of the fullerene carbon cage occurs up to 670°C. Molecular modeling with Hyperchem software version 7.5 confirmed that C60P1 is more thermally stable than C60P2.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3