In situ temperature determination using magnetic resonance spectroscopy thermometry for noninvasive postmortem examinations

Author:

Zoelch Niklaus12ORCID,Heimer Jakob1,Richter Henning3,Luechinger Roger4,Archibald Jessica5,Thali Michael J.1,Gascho Dominic1ORCID

Affiliation:

1. Department of Forensic Medicine and Imaging, Institute of Forensic Medicine University of Zurich Zurich Switzerland

2. Department of Adult Psychiatry and Psychotherapy Psychiatric University Hospital Zurich and University of Zurich Zurich Switzerland

3. Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich Zurich Switzerland

4. Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland

5. Department of Radiology Weill Cornell Medicine New York New York USA

Abstract

AbstractMagnetic resonance spectroscopy (MRS) thermometry offers a noninvasive, localized method for estimating temperature by leveraging the temperature‐dependent chemical shift of water relative to a temperature‐stable reference metabolite under suitable calibration. Consequentially, this technique has significant potential as a tool for postmortem MR examinations in forensic medicine and pathology. In these examinations, the deceased are examined at a wide range of body temperatures, and MRS thermometry may be used for the temperature adjustment of magnetic resonance imaging (MRI) protocols or for corrections in the analysis of MRI or MRS data. However, it is not yet clear to what extent postmortem changes may influence temperature estimation with MRS thermometry. In addition, N‐acetylaspartate, which is commonly used as an in vivo reference metabolite, is known to decrease with increasing postmortem interval (PMI). This study shows that lactate, which is not only present in significant amounts postmortem but also has a temperature‐stable chemical shift, can serve as a suitable reference metabolite for postmortem MRS thermometry. Using lactate, temperature estimation in postmortem brain tissue of severed sheep heads was accurate up to 60 h after death, with a mean absolute error of less than 0.5°C. For this purpose, published calibrations intended for in vivo measurements were used. Although postmortem decomposition resulted in severe metabolic changes, no consistent deviations were observed between measurements with an MR‐compatible temperature probe and MRS thermometry with lactate as a reference metabolite. In addition, MRS thermometry was applied to 84 deceased who underwent a MR examination as part of the legal examination. MRS thermometry provided plausible results of brain temperature in comparison with rectal temperature. Even for deceased with a PMI well above 60 h, MRS thermometry still provided reliable readings. The results show a good suitability of MRS thermometry for postmortem examinations in forensic medicine.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3