“Quantifying the Impacts of Multiple Stressors” (QIMS)—a new experimental platform for robust multifactorial experiments in benthic ecosystems

Author:

Schertenleib Katrin1ORCID,Fitzpatrick Robert2,O'Connor Nessa E.1ORCID

Affiliation:

1. Zoology, School of Natural Sciences, Trinity College Dublin Dublin Ireland

2. Civil, Structural & Environmental Engineering, School of Engineering, Trinity College Dublin Dublin Ireland

Abstract

AbstractTo predict the ecological consequences of expected global change, we need to understand the independent and combined effects of multiple stressors. Multiple experimental treatments are required to simultaneously test for effects of multiple stressors at different levels of intensity, independently and combined, and at different levels of biological organization. Most marine multiple stressors studies to date are conducted on assembled communities in mesocosms with a low number of treatments or low replication of treatments or both. These limitations prevent (1) robust data analyses, (2) characterization of single and combined effects of multiple stressors, and (3) identification of mechanisms underpinning biological responses. We present a new mesocosm‐based experimental platform for benthic communities: Quantifying the Impacts of Multiple Stressors (QIMS). Here, 96 independent mesocosms facilitate multifactorial and multilevel experimental designs with the high replication required for robust tests of multiple stressors and biological interactions. For example, three distinct pH levels are achieved by manipulating CO2 concentrations in the air supply, and three water temperature levels are provided by a cooling system in a fully crossed design that is required to identify all potential interactions, from which all combinations can be replicated 10 times (i.e., 90 experimental units). We demonstrate clearly how different levels of temperature and pCO2/pH can be manipulated precisely and maintained for at least 7 weeks. QIMS complements the limited number of permanently installed marine mesocosm facilities worldwide that simulate ocean warming and/or acidification and expedites multiple stressor research by providing an unprecedented level of replication for statistical robustness.

Funder

Trinity College Dublin

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3