Language networks of normal‐hearing infants exhibit topological differences between resting and steady states: An fNIRS functional connectivity study

Author:

Paranawithana Ishara12ORCID,Mao Darren23,McKay Colette M.23,Wong Yan T.14

Affiliation:

1. Department of Electrical and Computer Systems Engineering Monash University Clayton Victoria Australia

2. Bionics Institute East Melbourne Victoria Australia

3. Department of Medical Bionics The University of Melbourne Parkville Victoria Australia

4. Department of Physiology and the Monash Biomedicine Discovery Institute Monash University Clayton Victoria Australia

Abstract

AbstractTask‐related studies have consistently reported that listening to speech sounds activate the temporal and prefrontal regions of the brain. However, it is not well understood how functional organization of auditory and language networks differ when processing speech sounds from its resting state form. The knowledge of language network organization in typically developing infants could serve as an important biomarker to understand network‐level disruptions expected in infants with hearing impairment. We hypothesized that topological differences of language networks can be characterized using functional connectivity measures in two experimental conditions (1) complete silence (resting) and (2) in response to repetitive continuous speech sounds (steady). Thirty normal‐hearing infants (14 males and 16 females, age: 7.8 ± 4.8 months) were recruited in this study. Brain activity was recorded from bilateral temporal and prefrontal regions associated with speech and language processing for two experimental conditions: resting and steady states. Topological differences of functional language networks were characterized using graph theoretical analysis. The normalized global efficiency and clustering coefficient were used as measures of functional integration and segregation, respectively. We found that overall, language networks of infants demonstrate the economic small‐world organization in both resting and steady states. Moreover, language networks exhibited significantly higher functional integration and significantly lower functional segregation in resting state compared to steady state. A secondary analysis that investigated developmental effects of infants aged 6‐months or below and above 6‐months revealed that such topological differences in functional integration and segregation across resting and steady states can be reliably detected after the first 6‐months of life. The higher functional integration observed in resting state suggests that language networks of infants facilitate more efficient parallel information processing across distributed language regions in the absence of speech stimuli. Moreover, higher functional segregation in steady state indicates that the speech information processing occurs within densely interconnected specialized regions in the language network.

Funder

National Health and Medical Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3