Two mechanisms of retinal photoreceptor plasticity underlie rapid adaptation to novel light environments

Author:

Bolstad Kennedy1ORCID,Novales Flamarique Iñigo12ORCID

Affiliation:

1. Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada

2. Department of Biology University of Victoria Victoria British Columbia Canada

Abstract

AbstractFishes experience different light environments over short time periods that may require quick modulation of photoreceptor properties to optimize visual function. Previous research has shown that the relative expression of different visual pigment protein (opsin) transcripts can change within several days following exposure to new light environments, but whether such changes are mirrored by analogous modulation in opsin protein expression is unknown. Here, Atlantic halibut larvae and juveniles raised under white light were exposed to blue light for 1 week and their retina compared to that of controls, which remained under white light. Blue light‐treated larvae showed increased expression of all cone opsin transcripts, except rh2, over controls. They also had longer outer segments, and higher density of long wavelength sensitive (L) cones in the dorsal retina. In contrast, only the lws transcript was upregulated in juveniles exposed to blue light compared to controls but their L cone density was greater throughout the retina. These results demonstrate two mechanisms of rapid photoreceptor plasticity as a function of developmental stage associated with improved perception of achromatic or chromatic contrasts in line with the animal's ecological needs.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Neuroscience

Reference34 articles.

1. Photoreceptor distributions, visual pigments and the opsin repertoire of Atlantic halibut (Hippoglossus hippoglossus);Bolstad K.;Scientific Reports,2022

2. Chromatic organization of retinal photoreceptors during eye migration of Atlantic halibut ( Hippoglossus hippoglossus )

3. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3