Biosafe, rapid, and ultrahigh‐capacity endotoxin purification in blood by a sustainable and recyclable MOF‐functionalized chitin microsphere adsorbent

Author:

Liu Anxiong12,Chen Lu2,Qi Luhe2,Huang Jing2,Zou Yongkang1,Hu Zhiwen12,Yu Le2,Zhong Zibiao1,Ye Qifa1,Chen Chaoji2ORCID

Affiliation:

1. National Quality Control Center for Donated Organ Procurement Hubei Key Laboratory of Medical Technology on Transplantation Hubei Clinical Research Center for Natural Polymer Biological Liver Hubei Engineering Center of Natural Polymer‐Based Medical Materials Zhongnan Hospital of Wuhan University Institute of Hepatobiliary Diseases of Wuhan University Transplant Center of Wuhan University Wuhan China

2. School of Resource and Environmental Science Hubei Biomass‐Resource Chemistry and Environmental Biotechnology Key Laboratory Wuhan University Wuhan China

Abstract

AbstractSepsis is responsible for approximately 5.3 million deaths globally each year. Here, we constructed hierarchical chitin microspheres loaded with MOF‐919 (Ch/metal–organic frameworks [MOFs]) for the rapid and efficient removal of lipopolysaccharide (LPS) in complex blood environments. Furthermore, abundant active sites on MOF‐919(Sc) also enable a record‐high adsorption capacity of 9.56 mg/g in biomass‐based adsorbents due to the coordination interactions between endotoxin and MOF‐919(Sc). The LPS level of sepsis rabbits was less than 2 EU/mL (clearance rate >95%) after 90‐min hemoperfusion, showing no adverse effect on the rabbit organs. Additionally, compared to the commonly used LPS scrubber Toraymyxin (polymethyl methacrylate), the chitin adsorbent is significantly more cost‐effective and environmentally friendly. The preparation strategy for hierarchical porous microspheres offers notable advantages in designability, recyclability, and renewability, providing a new approach to sepsis treatment and promising prospects for the biomedical application of sustainable biomass materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3