Neural learning control for sampled‐data nonlinear systems based on Euler approximation and first‐order filter

Author:

Liang Dengxiang1,Wang Min12ORCID

Affiliation:

1. School of Automation Science and Engineering, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education South China University of Technology Guangzhou China

2. Pengcheng Laboratory Shenzhen China

Abstract

AbstractThe primary focus of this research paper is to explore the realm of dynamic learning in sampled‐data strict‐feedback nonlinear systems (SFNSs) by leveraging the capabilities of radial basis function (RBF) neural networks (NNs) under the framework of adaptive control. First, the exact discrete‐time model of the continuous‐time system is expressed as an Euler strict‐feedback model with a sampling approximation error. We provide the consistency condition that establishes the relationship between the exact model and the Euler model with meticulous detail. Meanwhile, a novel lemma is derived to show the stability condition of a digital first‐order filter. To address the non‐causality issues of SFNSs with sampling approximation error and the input data dimension explosion of NNs, the auxiliary digital first‐order filter and backstepping technology are combined to propose an adaptive neural dynamic surface control (ANDSC) scheme. Such a scheme avoids the ‐step time delays associated with the existing NN updating laws derived by the common ‐step predictor technology. A rigorous recursion method is employed to provide a comprehensive verification of the stability, guaranteeing its overall performance and dependability. Following that, the NN weight error systems are systematically decomposed into a sequence of linear time‐varying subsystems, allowing for a more detailed analysis and understanding. In order to ensure the recurrent nature of the input variables, a recursive design is employed, thereby satisfying the partial persistent excitation condition specifically designed for the RBF NNs. Meanwhile, it can verify that the NN estimated weights converge to their ideal values. Compared with the common ‐step predictor technology, there is no need to redesign the learning rules due to the designed NN weight updating laws without time delays. Subsequently, after capturing and storing the convergence weights, a novel neural learning dynamic surface control (NLDSC) scheme is specifically formulated by leveraging the acquired knowledge. The introduced methodology reduces computational complexity and facilitates practical implementation. Finally, empirical evidence obtained from simulation experiments validates the efficacy and viability of the proposed methodology.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3