Affiliation:
1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Lab of Chemical Engineering Rheology, Research Center of Chemical Engineering East China University of Science and Technology Shanghai China
2. Langfang Filial of Research Institute of Petroleum Exploration and Development, Petro China Langfang China
Abstract
AbstractTo enrich the clean fracturing fluid system with high temperature resistance, a novel tetrameric cationic surfactant (TET) was developed and used as a thickener and mixed with different concentrations of sodium salicylate (NaSal) to obtain a new clean fracturing fluid. The flow curves, thixotropy, viscoelasticity, temperature resistance property, and proppant‐suspending capacity were further investigated. The rheological study showed that the Casson model could be used to accurately describe the flow curve of TET/NaSal micelle solutions and the addition of NaSal improved the thixotropy and viscoelasticity of surfactant solution. The optimal mass ratio of TET/NaSal solution was 5/1.5 wt%, and it had good proppant‐suspending capacity. What is more, the retained viscosity of TET/NaSal (5/1.5 wt%) solution was 52.27 mPa·s after shearing at 140°C and 100.0 s−1 for 65 min, which met industry requirements (viscosity > 20 mPa·s) of viscoelastic surfactant fracturing fluids. Moreover, the combination of 10 wt% TET aqueous solution with pH value of 8.51 and 2.6 wt% salicylic acid (HSal) suspension of the same mass significantly delayed micellar formation. The four‐parameter rheo‐kinetics model can be used to fit the viscosity curves of micellar formation, which provided the rheological basis for the study of delayed viscoelastic micellar formation.
Funder
National Natural Science Foundation of China
Subject
Surfaces, Coatings and Films,Physical and Theoretical Chemistry,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献