Evaluating long‐term trends in annual precipitation: A temporal consistency analysis of ERA5 data in the Alps and Italy

Author:

Lussana Cristian1ORCID,Cavalleri Francesco2,Brunetti Michele3,Manara Veronica2,Maugeri Maurizio2

Affiliation:

1. Division for Climate Services The Norwegian Meteorological Institute Oslo Norway

2. Environmental Science and Policy Department University of Milan Milan Italy

3. Institute of Atmospheric Sciences and Climate National Research Council (CNR‐ISAC) Bologna Italy

Abstract

AbstractReanalyses are utilized for calculating climatological trends due to their focus on temporal consistency. ERA5 reanalysis family has proven to be a valuable and widely used product for trend extraction. This study specifically examines long‐term trends in total annual precipitation across two climatic hotspots: the Alps and Italy. It is acknowledged by reanalysis producers that variations in the observational systems used for data assimilation impact water cycle components like precipitation. This understanding highlights the need of assessing to what extent temporal variations in ERA5 precipitation amounts are solely a result of climate variations and the influence of changes in the observational system impacting simulation accuracy. Our research examines the differences between ERA5 and similar reanalyses against homogenized, trend‐focused observational datasets. We find that discerning the climatological signal within ERA5 adjustments for observational system variations is challenging. The trend in ERA5 from 1940 to 1970 shows distinct patterns over the Alps and, to a lesser extent, Italy, diverging from later ERA5 trends and those in other reanalyses. Notably, ERA5 shows an increasing, although nonlinear, trend in the deviation between ERA5 and the observational datasets. Improving future reanalysis interpretability could involve adopting a model‐only integration for the same period, akin to the ERA‐20C and ERA‐20CM approach.

Funder

Ministry for Universities and Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3