Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors

Author:

Khan Ziyauddin12ORCID,Kumar Divyaratan12,Lander Sanna1,Phopase Jaywant1,Crispin Reverant123ORCID

Affiliation:

1. Department of Science and Technology (ITN) Laboratory of Organic Electronics Linköping University Norrköping Sweden

2. Department of Science and Technology (ITN) Wallenberg Wood Science Center Linköping University Norrköping Sweden

3. Wallenberg Initiative Materials Science for Sustainability ITN Linköping University Norrköping Sweden

Abstract

AbstractZinc ion hybrid capacitors (ZHCs) are regarded as sustainable energy storage devices, largely due to the abundance of zinc and its compatibility with aqueous electrolytes. Thick glass microfiber separators are commonly employed in ZHCs because they resist penetration by Zn dendrites, a prevalent issue in these devices. However, glass fiber separators not only reduce the volumetric energy but also raise environmental concerns due to their production processes, which generate significant amounts of greenhouse gases. In this study, we propose using a sulfonated cellulose membrane (SCM) derived from softwood cellulose nanofibrils as an eco‐friendly and sustainable separator for ZHCs. Utilizing this sulfonated cellulose membrane, we achieved 2000 h of continuous plating/stripping of Zn and more than 95% coulombic efficiency. Additionally, the efficacy of SCM as a separator was validated through the successful deployment of a Zn ion hybrid capacitor, which exhibited specific energies of 42 Wh/kg. The ZHC demonstrated remarkable cyclic stability, enduring over 10 000 cycles with minimal self‐discharge behavior. This study highlights the use of a cost‐effective, thin, mechanically robust, and highly cross‐linked cellulose nanofibrils membrane for ZHCs, showcasing its potential for broader utilization in various energy storage devices.

Funder

Stiftelsen Åforsk

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3