The importance of terrestrial carbon sequestration during Termination 1

Author:

Jacobson GEORGE L.1ORCID,Norton STEPHEN A.12,Maasch KIRK A.12

Affiliation:

1. Climate Change Institute University of Maine Orono ME USA

2. School of Earth and Climate Science University of Maine Orono ME USA

Abstract

ABSTRACTDuring the transition from the Last Glacial Maximum (LGM) to the Holocene, terrestrial carbon sequestration occurred primarily in boreal forests and forest soils largely on landscapes that had been covered by ice sheets. Major processes operating during this period included radiative warming from rising concentrations of atmospheric CO2 (degassing oceans and oxidation of permafrost); increased seasonal warming associated with axial precession; melting of alpine glaciers and ice sheets; exposure of new land surfaces; and sequestration of carbon in expanding terrestrial vegetation and soils. We examine mechanisms of warming that melted glacial ice; temporal and spatial availability of newly exposed landscapes; rates at which plant colonization and soil development occurred; estimates of terrestrial carbon sequestration; and how those processes interacted with one another. Data from the West Antarctic Ice Sheet Divide ice core show that from 18 to 11 cal ka bp the concentration of atmospheric CO2 rose by ≈80 ppmv (≈170 Gt C); published estimates of net terrestrial carbon sequestration (following photosynthesis) are considerably higher (450–1250 Gt C). Thus, accumulation of carbon in terrestrial vegetation and soils played an important role in modulating atmospheric CO2 and, indirectly, Earth's climate during Termination 1, and possibly during earlier Quaternary ice ages.

Publisher

Wiley

Subject

Paleontology,Earth and Planetary Sciences (miscellaneous),Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3