Experimental determination of the discharge flow coefficient at a doorway for fire induced flow in natural and mixed convection

Author:

Koched A.1,Pretrel H.1,Vauquelin O.2,Audouin L.1

Affiliation:

1. Institut de Radioprotection et de Sûreté Nucléaire PSN‐RES/SA2I, Laboratoire Commun ETIC Centre de Cadarache, Bâtiment 346 13115 Saint‐Paul‐Lez‐Durance France

2. Université Aix‐Marseille IUSTI UMR 6595, Laboratoire Commun ETIC 5 rue Enrico Fermi 13453 Marseille France

Abstract

SummaryThe study is an experimental investigation of the discharge flow coefficient at a doorway‐type opening in the case of a fire in an enclosure open to atmosphere. Natural and mixed convection flows are considered with the use of mechanical ventilation. The discharge coefficient is defined as the ratio between the effective flow rate determined experimentally and a theoretical flow rate based on a Bernoulli approach. The effective mass flow rate is obtained from velocity field measured with stereoscopic particle image velocimetry technique. The theoretical flow rate is calculated from vertical temperature profiles measured from both sides of the doorway. Only inflow rate is considered for the calculation of the discharge coefficient. In natural convection mode, a CD value of 0.54 ± 0.5 is obtained on a reduced‐scale opening (to be compared with 0.68 at large scale). In a mixed convection case, the discharge coefficient is much lower and reaches 0.26 ± 0.06. This study shows that the discharge coefficient CD may vary significantly regarding the dimension of the opening and the flow conditions (natural and mixed convection). It illustrates the limits of considering a constant discharge coefficient when dealing with doorway flows in a confined and mechanically ventilated compartment. Copyright © 2014 John Wiley & Sons, Ltd.

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3