Decomposing the role of dry intrusions for ocean evaporation during mistral

Author:

Givon Yonatan1ORCID,Keller Douglas2,Pennel Romain2,Drobinski Philippe2,Raveh‐Rubin Shira1ORCID

Affiliation:

1. Department of Earth and Planetary Sciences Weizmann Institute of Science Rehovot Israel

2. Laboratoire de Météorologie Dynamique‐IPSL, École Polytechnique Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS Palaiseau France

Abstract

AbstractThe mistral is a northerly gap‐wind regime blowing through the Rhone Valley in Southern France. It is held responsible for the sea‐surface cooling necessary to produce deep convection in the Gulf of Lion through turbulent ocean heat loss. The mistral is tightly connected to lee‐cyclogenesis in the Gulf of Genoa, where topography forces substantial downward motion. Dry intrusions (DIs) are airstreams forming the descending branch of extratropical cyclones. Known to induce cold and dry surface anomalies, DIs are potential contributors to enhanced surface evaporation during mistral. In this study, a climatological database (ERA‐INTERIM, 1981–2016) of mistral–DI co‐occurrence is constructed, allowing quantification of the impact of DIs on the mistral evaporative hot spot for the first time. We find that, on average, mistral–DI evaporation rates are doubled, compared to mistral without DIs. Moreover, cluster‐composite analysis reveals amplifications exceeding 300% between dynamically similar mistral events, with response to DIs. Daily latent heat‐flux anomalies in the Gulf of Lion are decomposed into contributions from the various parameters to analyse the mistral evaporation response to DIs. Mistral–DI events are shown to produce extreme evaporation rates through increased mistral wind speeds. The results highlight the downward momentum flux delivered by DIs to the mistral at the Gulf of Lion as the primary driver of the evaporation amplification mechanism. We further explore the variability between different mistral–DI events and conclude that extreme mistral–DI evaporation events are linked to descending air trajectories entering the Gulf of Lion at an early stage of their lifetimes. These DIs charge the mistral with maximum vertical momentum fluxes, which act to intensify surface winds and hence evaporation rates.

Funder

European Cooperation in Science and Technology

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3