Categorical data analysis using discretization of continuous variables to investigate associations in marine ecosystems

Author:

Solvang Hiroko Kato1ORCID,Imori Shinpei2ORCID,Biuw Martin3,Lindstrøm Ulf34,Haug Tore3

Affiliation:

1. Marine Mammals Research Group, Department of Bergen Institute of Marine Research Bergen Norway

2. Department of Mathematics Hiroshima University Higashi‐Hiroshima City Japan

3. Marine Mammals Research Group, Department of Tromsø Institute of Marine Research Tromsø Norway

4. Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway

Abstract

AbstractUnderstanding and predicting interactions between predators and prey and their environment are fundamental for understanding food web structure, dynamics, and ecosystem function in both terrestrial and marine ecosystems. Thus, estimating the conditional associations between species and their environments is important for exploring connections or cooperative links in the ecosystem, which in turn can help to clarify such directional relationships. For this purpose, a relevant and practical statistical method is required to link presence/absence observations with biomass, abundance, and physical quantities obtained as continuous real values. These data are sometimes sparse in oceanic space and too short as time series data. To meet this challenge, we provide an approach based on applying categorical data analysis to present/absent observations and real‐number data. The real‐number data used as explanatory variables for the present/absent response variable are discretized based on the optimal detection of thresholds without any prior biological/ecological information. These discretized data express two different levels, such as large/small or high/low, which give experts a simple interpretation for investigating complicated associations in marine ecosystems. This approach is implemented in the previous statistical method called CATDAP developed by Sakamoto and Akaike in 1979. Our proposed approach consists of a two‐step procedure for categorical data analysis: (1) finding the appropriate threshold to discretize the real‐number data for applying an independent test; and (2) identifying the best conditional probability model to investigate the possible associations among the data based on a statistical information criterion. We perform a simulation study to validate our proposed approach and investigate whether the method's observation includes many zeros (zero‐inflated data), which can often occur in practical situations. Furthermore, the approach is applied to two datasets: (1) one collected during an international synoptic krill survey in the Scotia Sea west of the Antarctic Peninsula to investigate associations among krill, fin whale (Balaenoptera physalus), surface temperature, depth, slope in depth (flatter or steeper terrain), and temperature gradient (slope in temperature); (2) the other collected by ecosystem surveys conducted during August–September in 2014–2017 to investigate associations among common minke whales, the predatory fish Atlantic cod, and their main prey groups (zooplankton, 0‐group fish) in Arctic Ocean waters to the west and north of Svalbard, Norway. The R code summarizing our proposed numerical procedure is presented in S4S1.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3