Molecular engineering of Pyran‐fused acceptor–donor–acceptor‐type non‐fullerene acceptors for highly efficient organic solar cells—A density functional theory approach

Author:

Hassan Talha1,Adnan Muhammad2ORCID,Hussain Riaz1ORCID,Hussain Fakhar1,Khan Muhammad Usman1

Affiliation:

1. Department of Chemistry University of Okara Okara Pakistan

2. Graduate School of Energy Science and Technology Chungnam National University Daejeon Republic of Korea

Abstract

AbstractThe end‐capped modification proves that it is an excellent attempt to improve the solar cells performances. Therefore, nowadays, many researchers are working to design new molecules for potential use in organic photovoltaics. Herein, we have modified new molecules (SA1–SA5) from the reference (R) for fullerene‐free solar cells. These novel molecules have lower excitation energy levels that make the easier excitation in the excited state. Additionally, SA1 to SA5 molecules exhibit excellent charge mobility due to the modification of an efficient core units. Geometric and physiochemical investigations indicate that the modeled molecules are beneficial for efficient organic solar cells. The estimation of frontier molecular orbitals analysis, reorganizational energy, photovoltaic characteristics, and charge transmission calculations was done using density functional theory calculations with B3LYP/6‐31G (d, p) basis set. Among all designed molecules, SA3 has emerged as the preferred choice because of its outstanding photovoltaic characteristics, which include a minimal bandgap of 2.03 eV and reorganization energy of electron and holes of 0.0095 and 0.0077 eV, correspondingly. The designed materials (SA1–SA5) displayed a high λ max values, that is, 693.54 nm (in gas) and 679.63 nm (in chloroform). This theoretical framework suggests that the required photovoltaic properties may be efficiently obtained by remodeling the new molecules.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3