Quantifying landscape change following catastrophic dam failures in Edenville and Sanford, Michigan, USA

Author:

Martin Harrison K.123ORCID,Edmonds Douglas A.1ORCID,Yanites Brian J.1ORCID,Niemi Nathan A.4

Affiliation:

1. Department of Earth and Atmospheric Sciences Indiana University Bloomington Indiana USA

2. Division of Geological and Planetary Sciences California Institute of Technology Pasadena California USA

3. Resnick Sustainability Institute California Institute of Technology Pasadena California USA

4. Department of Earth and Environmental Sciences University of Michigan Ann Arbor Michigan USA

Abstract

AbstractDam failures due to changing hydroclimate and ageing infrastructure pose a significant threat to downstream river systems and communities. The detailed geomorphic effects of catastrophic dam failures are not well known because of a lack of high‐resolution topographic data before and after failures. On 19 May 2020, the 17‐m‐tall Edenville and 11‐m‐tall Sanford dams near Midland, Michigan, USA, failed as a result of significant rainfall over the preceding 2 days. We analysed the geomorphic impacts of these failures using a pre‐failure airborne lidar dataset and three uncrewed aerial vehicle (UAV)‐based lidar surveys collected 2 weeks, 3 months and 11 months after failure. Our survey following the dam failure revealed 47 100 ± 11 900 m3 of net floodplain erosion and 17 300 ± 4200 m3 of net deposition downstream of the Edenville and Sanford dam breaches, respectively. Over the year following failure, most geomorphic change was confined to new knickpoints migrating slowly through underlying glacial till substrate, with little change to riverbanks or surrounding floodplains. A lack of impounded reservoir sediment and antecedent downstream topography, including valley width and the location of the breaches relative to the river below the dams, contributed to relatively modest geomorphic changes despite the magnitude of water released. We provide insight into how landscapes are shaped by catastrophic floods, which are likely to become more common with ageing dams and a changing hydroclimate.

Funder

National Science Foundation

International Association of Sedimentologists

National Aeronautics and Space Administration

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3