Unlocking photocatalytic NO removal potential in an S‐type UiO‐66‐NH2/ZnS(en)0.5 heterostructure

Author:

Dai Wenrui1,Wang Chenxiang1,Wang Yi1,Sun Jieting1,Ruan Hang1,Xue Yuhua1,Xiao Shuning1ORCID

Affiliation:

1. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai China

Abstract

AbstractThe contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S‐type heterostructure photocatalyst, UiO‐66‐NH2/ZnS(en)0.5, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO‐66‐NH2 with the highest occupied molecular orbital of ZnS(en)0.5, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built‐in electric field, facilitating charge separation and migration, as evidenced by time‐resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO‐66‐NH2 counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X‐ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S‐type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S‐scheme heterojunctions to refine reactive oxygen species for NO remediation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3