Unveiling the Ultrafast Electron Transfer Dynamics in Epitaxial Dodecahedron CsPbBr3/Au Heterostructure

Author:

Samanta Samaresh1,Babu Kaliyamoorthy Justice1,Shukla Ayushi1,Kaur Gurpreet1,Kaur Arshdeep1,Ghosh Hirendra N.2ORCID

Affiliation:

1. Institute of Nano Science and Technology, Mohali Punjab 140306 India

2. School of Chemical Science National Institute of Science Education and Research, Jatni Bhubaneswar 752050 Odisha India

Abstract

AbstractEpitaxial perovskite heterostructures consisting noble metal nanoparticles have been received immense interest in hot carrier photovoltaic devices and photocatalysis. The major understanding of carrier extraction across the interface of perovskite heterostructure have shown exciting interest for next generation device applications. In the present study, dodecahedron CsPbBr3/Au heterostructure was synthesized via hot injection method. From HR‐TEM images, we observed direct epitaxial growth between (110) plane of CsPbBr3 and (111) plane of Au nanoparticle (NPs), which was further supported by steady‐state and time‐resolved photoluminescence studies. Further, femtosecond transient absorption spectroscopy has been utilized to understand the charge transfer dynamics of synthesized samples. In CsPbBr3/Au heterostructure, faster recovery has been noticed than that of pristine CsPbBr3, which clearly suggests transfer of electrons from the conduction band of CsPbBr3 to Au NPs. The distinct fast electron transfer in the CsPbBr3/Au heterostructure can be mainly ascribed to the epitaxial growth and strong electronic coupling between CsPbBr3 and Au NPs. The reduced bleach intensity, faster bleach growth and recovery kinetics strongly suggest efficient electron transfer from CsPbBr3 NCs to Au NPs. These findings clearly establish that architecture of metal and perovskite heterostructures may pave way to develop suitable alternative for highly efficient photovoltaic devices and photocatalysis applications.

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3