Surface Plasmon Resonance (SPR)−Triggered Polarization of BaTiO3 Surface on Ag Nanocubes Improves Photocatalysis

Author:

Ma Yanying1,Liu Xiaoyun2,Xu Yujiao1,Alves Tiago V.3,Li Mai1,Wang Chunrui1,Camargo Pedro H. C.4,Wang Jiale15ORCID

Affiliation:

1. College of Science Donghua University Shanghai 201620 China

2. Research Center for Analysis and Measurement Donghua University Shanghai 201620 China

3. Departamento de Físico-Química Instituto de Química Universidade Federal da Bahia Rua Barão de Jeremoabo 14740170-115 Salvador-BA Brazil

4. Department of Chemistry University of Helsinki A.I. Virtasen aukio 1 00014 Helsinki Finland

5. Shanghai Institute of Intelligent Electronics and Systems Donghua University Shanghai 201620 China

Abstract

AbstractThe surface plasmon resonance (SPR)‐generated electric field (E‐field) intensities around a Ag nanocube (NC) before and after it is covered by a BaTiO3 (BTO) layer (BTO@Ag NC) were calculated. It was observed that the theoretical E‐field intensities were reduced on BTO@Ag NCs, thus suggesting inferior catalytic activities under visible light illumination. However, BTO@Ag NCs experimentally displayed better photocatalytic performance than that of Ag NCs under illumination at 633 nm, both in ambient argon (Ar) and in ambient air, where p‐aminothiophenol (PATP) molecules were used to probe the conversion. The mechanism can be attributed to the surface polarization of the BTO layer trigged by a SPR effect of the Ag core. The oscillation of free electrons in the Ag core aroused appearance of surface polarization charge on the ferroelectric (FE) BTO surface, which resulted in the enhanced catalytic properties of BTO@Ag NCs. Therefore, our finding may provide a novel method to enhance visible‐light responsive photocatalytic activity of wide bandgap FE materials by depositing them on plasmonic metal nanostructures.

Funder

Natural Science Foundation of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Wiley

Subject

Organic Chemistry,Physical and Theoretical Chemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3