Ion solvation in atomic baths: From snowballs to polarons

Author:

Chowdhury Saajid12,Perez‐Ríos Jesús12ORCID

Affiliation:

1. Department of Physics and Astronomy Stony Brook University Stony Brook New York USA

2. Institute for Advanced Computational Science Stony Brook University Stony Brook New York USA

Abstract

AbstractSolvation, the result of the complicated interplay between solvent–solute and solvent–internal interactions, is one of the most important chemical processes. Consequently, a complete theoretical understanding of solvation seems like a heroic task. However, it is possible to elucidate fundamental solvation mechanisms by looking into simpler systems, such as ion solvation in atomic baths. In this work, we study ion solvation by calculating the ground state properties of a single ion in a neutral bath from the high‐density to the low‐density regimes, finding common ground for these two, in principle, disparate regimes. Our results indicate that a single 174Yb+ ion in a bath of 7Li atoms forms a coordination complex at high densities with a coordination number of 8, with strong electrostriction characteristic of the snowball effect. On the contrary, treating the atomic bath as a dilute quantum gas at low densities, we find that the ion‐atom interaction's short‐range plays a significant role in the physics of many‐body‐bound states and polarons. Furthermore, in this regime, we explore the role of an ion trap necessary to experimentally realize this system, which drastically affects the binding mechanism of the ion and atoms from a quantum gas. Therefore, our results give a novel insight into the universality of ion‐neutral systems in the ultracold regime and the possibilities of observing exotic many‐body effects.Keypoints A global study of ion solvation in atomic baths from the high‐ to the low‐density regimes. The ion–atom short‐range interaction is critical to understanding the presence of many‐body‐bound states and polarons. The ion‐trapping potential drastically impacts many‐body‐bound states and polaron formation.

Funder

Simons Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3