Transition metal dichalcogenide FET‐based dynamic random‐access memory

Author:

Raoofi Mahdiye1,Gholipour Morteza1ORCID

Affiliation:

1. Faculty of Electrical and Computer Engineering Babol Noshirvani University of Technology Babol Iran

Abstract

AbstractTransition metal dichalcogenide field‐effect transistors (TMDFETs) as a replacement for conventional metal–oxide–semiconductor field‐effect transistors (MOSFETs) have attracted the attention of researchers in recent years. The efficiency of these devices should be investigated in different aspects in digital systems. One of the important components of such systems is dynamic random‐access memory (DRAM), which is used in most computers and many electronic systems as the main memory due to its small area and simple structure, compared to static memory (SRAM) cells. In this paper, a regular DRAM cell is designed based on TMDFET devices and its performance is compared with a similar cell in conventional MOSFET technology from various aspects, including DRAM‐specific timing characteristics considering changes in design and environmental parameter variations using Monte Carlo simulations. The simulations have been carried out in HSPICE with 16 nm technology under fair conditions for different technologies, at room temperature with a 0.7‐V power supply. The results show that the TMD‐DRAM has 3.55×, 3.08×, and 2.23× faster bitline recovery, merge time, and sense time than Si‐MOS‐DRAM, respectively. The Si‐MOS‐DRAM, on the other hand, has 1.65× faster write time compared to TMD‐DRAM. However, TMD‐DRAM consumes overall higher power than Si‐MOS‐DRAM, and shows higher average read power variability with the σ/μ = 0.476. The TMD‐DRAM also shows higher variability in the studied timing characteristics than Si‐MOS‐DRAM except merge and sense times.

Funder

Babol Noshirvani University of Technology

Publisher

Wiley

Reference20 articles.

1. 1T-1C Dynamic Random Access Memory Status, Challenges, and Prospects

2. Simulation and analysis of 3T and 4T CNTFET DRAM design in 32nm technology;Singh NS;Int J Electron Signals Syst,2014

3. Single-layer MoS2 transistors

4. A Compact Short-Channel Model for Symmetric Double-Gate TMDFET in Subthreshold Region

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3