Trends in the Completeness and Validity of Sources of Death Data Against the National Death Index From 2010 to 2018

Author:

Sponholtz Todd1ORCID,Jamal‐Allial Aziza1ORCID,Vojjala Shiva K.1,Papazian Anahit1,Eshete Biruk1,Paullin Mark1,Mahmoudpour Seyed Hamidreza2,Verpillat Patrice2,Beachler Daniel C.1ORCID

Affiliation:

1. Carelon Research Wilmington Delaware USA

2. Merck Healthcare KGaA Darmstadt Germany

Abstract

ABSTRACTPurposeWe investigated time trends in validation performance characteristics for six sources of death data available within the Healthcare Integrated Research Database (HIRD) over 8 years.MethodsWe conducted a secondary analysis of a cohort of advanced cancer patients with linked National Death Index (NDI) data identified in the HIRD between 2010 and 2018. We calculated sensitivity, specificity, positive predictive value, and negative predictive value for six sources of death status data and an algorithm combining data from available sources using NDI data as the reference standard. Measures were calculated for each year of the study including all members in the cohort for at least 1 day in that year.ResultsWe identified 27 396 deaths from any source among 40 692 cohort members. Between 2010 and 2018, the sensitivity of the Death Master File (DMF) decreased from 0.77 (95% CI = 0.76, 0.79) to 0.12 (95% CI = 0.11, 0.14). In contrast, the sensitivity of online obituary data increased from 0.43 (95% CI = 0.41, 0.45) in 2012 to 0.71 (95% CI = 0.68, 0.73) in 2018. The sensitivity of the composite algorithm remained above 0.83 throughout the study period. PPV was observed to be high from 2010 to 2016 and decrease thereafter for all sources. Specificity and NPV remained at high levels throughout the study.ConclusionsWe observed that the sensitivity of mortality data sources compared with the NDI could change substantially between 2010 and 2018. Other validation characteristics were less variable. Combining multiple sources of mortality data may be necessary to achieve adequate performance particularly for multiyear studies.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3