Minimum loss optimization of flywheel energy storage systems via distributed adaptive dynamic programming

Author:

Xiao Feng12,Ding Zikang2,Wei Bo2ORCID,Zhang Cong2

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing China

2. School of Control and Computer Engineering North China Electric Power University Beijing China

Abstract

AbstractIn this article, a distributed controller based on adaptive dynamic programming is proposed to solve the minimum loss problem of flywheel energy storage systems (FESS). We first formulate a performance function aiming to reduce total losses of FESS in power distribution applications. Then we use the Hamilton–Jacobi–Bellman (HJB) equation to solve this optimal control problem. The solution of the HJB equation is approximated by neural networks. To achieve distributed control, we estimate the global variables in the HJB equation by using the dynamic average consensus algorithm. A barrier Lyapunov function and a saturation function are introduced to handle the issue of state and input constraints, respectively. Then the stability of the system is proved through the Lyapunov stability analysis. Finally the effectiveness of the proposed strategy is verified by simulations. Simulation results show that FESS can track the power command while minimizing total power losses by interacting with neighbors. The proposed algorithm leads to a loss reduction of compared to the equal power distribution strategy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3