Grain yield and quality responses to nitrogen application rate and timing in dry direct broadcast seeded rice under different weather conditions

Author:

Tanaka Ryo1ORCID,Nakano Hiroshi12ORCID

Affiliation:

1. Kyushu Okinawa Agricultural Research Center National Agriculture and Food Research Organization (NARO) Chikugo Japan

2. Central Region Agricultural Research Center National Agriculture and Food Research Organization (NARO) Tsukuba Japan

Abstract

AbstractIn rice (Oryza sativa L.) production, dry direct seeding is one of the most essential technologies to reduce labor input and to increase net income. Field experiments were conducted in southwestern Japan in 2019 and 2020 to determine the effects of nitrogen (N) application rate and timing on grain yield, lodging, grain appearance, and protein content in dry direct broadcast seeded rice under different weather conditions. In 2019, plants had larger source ability using the normal solar radiation at the tillering stage, regardless of N application timings. Plants with applied N at the reproductive stage produced the highest grain yield and the highest percentage of undamaged grains under high air temperature condition during the early ripening stage. In 2020, plants did not have larger source ability due to the lower solar radiation at the tillering stage. Plants with applied N at the reproductive stage produced the highest grain yield but produced the highest percentage of green immature grains. These results mean that solar radiation at the tillering stage may be important for increasing grain yield and quality in dry direct broadcast seeded rice. Therefore, since plants grown under normal solar radiation condition at the tillering stage may have large source ability, more N application at the reproductive stage may be recommended to increase grain yield. In contrast, since plants grown under low solar radiation condition at the tillering stage may have small source ability, less N application at the reproductive stage may be recommended to decrease the occurrence of green immature grains.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3