Affiliation:
1. Department of Civil Engineering Khavaran Institute of Higher Education Mashhad Iran
2. Reseach & development unit Sayyal Samen Co. Mashhad Iran
3. Department of Water Science and Engineering Ferdowsi University of Mashhad Mashhad Iran
4. Institute of Ocean and Earth Sciences University Malaya Kuala Lumpur Malaysia
5. Caribbean Institute for Meteorology and Hydrology Bridgetown Barbados
6. Islamic Azad University Tehran Iran
7. School of Engineering and Centre for Water Security and Environmental Sustainability The University of Newcastle Callaghan New South Wales Australia
8. School of climate change and adaptation University of Prince Edward Island Charlottetown Prince Edward Island Canada
Abstract
AbstractThe Google Earth Engine (GEE) was used to investigate the performance of the Global Land Data Assimilation System (GLDAS) soil temperature (ST) data against observed ST from 13 synoptic stations over a semiarid region in Iran. Three‐hourly ST data were collected and analyzed in two depths (0–10 cm; 40–100 cm) and 5 years. In each depth, GLDAS‐Noah ST data were evaluated for daily minimum, maximum, and average ST (i.e., Tmin, Tmax, and Tavg). Based on the correlation coefficient, Kling–Gupta Efficiency, and Nash–Sutcliffe Efficiency the overall performance of the GLDAS‐Noah is 0.96, 0.66, and 0.79 for Tmin; 0.97, 0.84, and 0.89 for Tavg; and 0.95, 0.89, and 0.89 for Tmax, respectively in the first layer. Likewise, 0.97, 0.85, and 0.86 for Tmin; 0.97, 0.77, and 0.80 for Tavg; and 0.97, 0.69, and 0.69 for Tmax are obtained in the second layer. However, there is a significant negative bias which tends to underestimate ST in the two investigated layers, given by an average bias over all the stations analyzed of −24%, −12%, and −5% for Tmin, Tavg, and Tmax in the first layer, and average bias of −8%, −13%, and −17% for Tmin, Tavg, and Tmax in the second layer. This study reveals that GLDAS‐Noah‐derived ST can be used in arid regions where little or no observation data is available. Moreover, GEE performed as an advanced geospatial processing tool in regional scale analysis of ST in different layers.