Convergence rates of Metropolis–Hastings algorithms

Author:

Brown Austin1,Jones Galin L.2ORCID

Affiliation:

1. Department of Statistical Sciences University of Toronto Toronto Ontario Canada

2. School of Statistics University of Minnesota Minneapolis Minnesota USA

Abstract

AbstractGiven a target probability density known up to a normalizing constant, the Metropolis–Hastings algorithm simulates realizations from a Markov chain which are eventual realizations from the target probability density. A key element for ensuring a reliable Metropolis–Hastings simulation experiment is understanding how quickly the simulation will generate a representative sample from target density. This corresponds to understanding the convergence properties of the Metropolis–Hastings Markov chain. State‐of‐the‐art methods for convergence analysis of Metropolis–Hastings algorithms are considered and reviewed. Practically important topics are discussed for an interdisciplinary audience. This includes convergence properties in high dimensions, proper tuning, initialization, and limitations of current convergence analyses.This article is categorized under: Statistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo Statistical and Graphical Methods of Data Analysis > Monte Carlo Methods Statistical and Graphical Methods of Data Analysis > Bayesian Methods and Theory

Funder

National Science Foundation

Publisher

Wiley

Reference90 articles.

1. Explicit convergence bounds for Metropolis Markov chains: Isoperimetry, spectral gaps and profiles;Andrieu C.;Annals of Applied Probability,2024

2. On the ergodicity properties of some adaptive MCMC algorithms

3. Ascolani F. Roberst G. O. &Zanella G.(2024).Scalability of Metropolis‐within‐Gibbs schemes for high‐dimensional Bayesian models.arXiv:2403.09416.

4. Markov Chain Monte Carlo confidence intervals

5. Renewal theory and computable convergence rates for geometrically ergodic Markov chains

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3